Tehokkaiden AI-agenttien rakentaminen: Käytännön vinkkejä ja tekniikoita

Tehokkaiden AI-agenttien rakentaminen: Käytännön vinkkejä ja tekniikoita
Photo by Lachlan Donald / Unsplash

1. Mitä ovat AI-agentit ja miksi niiden rakentaminen on haastavaa?

Aloitetaan perusasioista: mitä AI-agentit oikeastaan ovat? Määritelmiä on monia, ja usein termiä käytetään väljästi. Yksinkertaistettuna AI-agentti on ohjelmisto, joka käyttää suuria kielimalleja (LLM) osana toimintaansa. Mutta onko mikä tahansa LLM:ää hyödyntävä järjestelmä automaattisesti AI-agentti? Mielestäni ei.

Entropicin blogikirjoituksessa esitelty jaottelu työnkulkujen ja agenttien välillä kuvaa tätä eroa hyvin. Työnkulut ovat järjestelmiä, joissa LLM:ien ja työkalujen toimintaa ohjataan ennalta määritellyillä koodipolulla. Agentit taas ohjaavat itse omaa toimintaansa ja työkalujensa käyttöä.

On tärkeää ymmärtää, milloin käyttää kumpaa lähestymistapaa. Usein yksinkertainen, ennalta määritelty työnkulku riittää. Monimutkaisten agenttijärjestelmien rakentaminen kannattaa aloittaa vasta, kun yksinkertaisemmat ratkaisut eivät riitä.

2. Tehokkaiden AI-järjestelmien rakentaminen: Työvirtamallien hyödyntäminen

AI-järjestelmiä voi rakentaa monilla eri työkaluilla. Koodaajat voivat käyttää Pythonia, TypeScriptiä tai JavaScriptiä. Ilman koodaustaitojakin pärjää työkaluilla kuten Make.com, n8n tai Flowise. Työkalua tärkeämpää on kuitenkin ymmärtää eri työvirtamallit:

  • Haku (retrieval): Tietoa haetaan ulkoisista lähteistä, kuten tietokannoista, ja syötetään LLM:lle kontekstiksi.
  • Työkalut (tools): Ulkoisia palveluita ja API:eja käytetään tiedon hakemiseen ja toimintojen suorittamiseen.
  • Muisti (memory): Aiempia interaktioita LLM:n kanssa tallennetaan ja käytetään kontekstiksi.

Näiden lisäksi on olemassa useita hyödyllisiä työvirtakuvioita:

  • Prompt chaining: Useita LLM-kutsuja ketjutetaan yhteen.
  • Reititys (routing): LLM ohjaa toimintaa eri polkuille datan perusteella.
  • Rinnakkaistaminen (parallelization): Useita LLM-kutsuja suoritetaan samanaikaisesti.
  • Orkesterointi-työntekijä (orchestrator-worker): LLM delegoi tehtäviä eri työntekijöille.
  • Arviointi-optimointi (evaluator-optimizer): LLM arvioi ja optimoi omaa tuotostaan.

3. Agenttimallien ymmärtäminen ja niiden käytön rajoitukset

Agenttimallissa LLM toimii itsenäisemmin ja ohjaa omaa toimintaansa. Se iteroi ja oppii kokemuksistaan. Tämä kuulostaa lupaavalta, mutta käytännössä toimivien agenttien rakentaminen on erittäin haastavaa. Esimerkiksi Devin, AI-ohjelmistokehittäjä, on hyvä esimerkki agenttimallin haasteista. Vaikka Devin on teoriassa tehokas, käytännössä sen tulokset eivät usein vastaa odotuksia. Tämä voi ilmetä esimerkiksi epätarkkoina tai epäjohdonmukaisina koodituotoksina.

4. Onnistuneen AI-järjestelmän rakentamisen avaimet: Vinkkejä ja parhaita käytäntöjä

Lopuksi vielä muutamia vinkkejä onnistuneeseen AI-järjestelmän rakentamiseen:

  • Varo agenttikehyksiä: Ne voivat nopeuttaa kehitystä, mutta varmista, että ymmärrät niiden toiminnan.
  • Priorisoi deterministisiä työnkulkuja: Aloita yksinkertaisista, ennalta määritellyistä työnkuluista.
  • Huomioi skaalautuvuus: Testaa ja optimoi järjestelmäsi skaalautuvuutta.
  • Testaus ja arviointi: Säännöllinen testaus ja arviointi ovat välttämättömiä.
  • Suojaukset (guard rails): Estä hallusinaatiot ja varmista, että järjestelmäsi toimii turvallisesti.

Muista, että AI-järjestelmien kehittäminen vaatii jatkuvaa testausta ja optimointia. Aloita pienestä, testaa ja optimoi, ja lisää monimutkaisuutta vasta tarvittaessa. Näin varmistat, että rakennat tehokkaita AI-järjestelmiä, jotka toimivat käytännössä.

Lue lisää

Kasvata myyntiä ja säästä kustannuksia AI työnkuluilla pk yrityksessä

Kasvata myyntiä ja säästä kustannuksia AI työnkuluilla pk yrityksessä

Pk‑yrityksen AI‑harppaus arjessa nyt Joulukuussa 2025 AI‑transformaatio on siirtynyt puheista tuotantoon. Tuoreet katsaukset suomalaisista yrityksistä vahvistavat, että suurin este ei ole teknologia tai hinta, vaan osaamisen puute – samalla kun mitattavia käyttökohteita löytyy myynnistä asiakastukeen (lähde: Rajut.fi, 2025). AI‑kiihdytysohjelmien case‑tarinat puolestaan osoittavat, että systemaattinen priorisointi

Kirjoittanut Ilari Schmidt
Pk yritys kasvattaa myyntiä ja tehostaa arkea tekoälytyönkuluilla

Pk yritys kasvattaa myyntiä ja tehostaa arkea tekoälytyönkuluilla

Tämä artikkeli on julkaistu 19.12.2025. Ingressi Tekoäly on siirtynyt puheista arkeen. Tuoreet koosteet suomalaisista yrityksistä kertovat, että merkittävin este ei ole enää teknologia tai hinta, vaan osaamisen puute, vaikka mitattavia käyttötapauksia löytyy jokaisesta toiminnosta myynnistä asiakastukeen (Rajut.fi, 2025). Samalla pk-yrityksille on tarjolla valmiita 90 päivän toteutusmalleja, joilla

Kirjoittanut Ilari Schmidt
Pk yrityksen käytännön AI työnkulut myynnin kasvattamiseen ja asiakastuen tehostamiseen

Pk yrityksen käytännön AI työnkulut myynnin kasvattamiseen ja asiakastuen tehostamiseen

Ingressi Tekoäly on siirtynyt puheista tuotantoon. Pk-yritysten arjessa tämä näkyy älykkäinä työnkuluina, jotka vapauttavat työaikaa, parantavat myyntiä ja sujuvoittavat asiakaspalvelua. Tuoreet koosteet korostavat kahta teemaa: osaamiskuilu hidastaa etenemistä, mutta samalla ekosysteemi, työkalut ja valmiit mallit madaltavat kynnystä aloittaa (Ilari Schmidt, 2025). Lisäksi syksyn uutisissa esiinnousseet turvallisuusparannukset ja kevyemmät käyttöönoton polut

Kirjoittanut Ilari Schmidt
Kasvata myyntiä ja vapauta työaikaa älykkäillä tekoälytyönkuluilla

Kasvata myyntiä ja vapauta työaikaa älykkäillä tekoälytyönkuluilla

Ingressi Tekoälytransformaatio ei ole enää IT-hanke, vaan käytännön tapa kasvattaa myyntiä, parantaa asiakaskokemusta ja tehostaa arjen prosesseja. Tuoreet koosteet suomalaisesta yrityskentästä osoittavat, että käyttöönoton suurin este pk-yrityksissä on osaaminen, ei niinkään teknologia tai kustannus (Rajut.fi, 2025). Samaan aikaan pk-yrityksille on tarjolla valmiita, 90 päivän toteutusmalleja, joilla työnkulkuja voi viedä

Kirjoittanut Ilari Schmidt
💬